How to Parse Addresses using Python and Google GeoCoding API

Share:

Web scraping can often lead to you having scraped address data which are unstructured. If you have come across a large number of freeform address as a single string, for example – 9 Downing St Westminster London SW1A, UK”,  you know how hard it would be to validate, compare and deduplicate these addresses. To start with you’ll have to split this address into a more structured form with house number, street name, city, state, country and zip code separately. It’s quite easy to parse address in Python and this tutorial will show you how.

Available Python Address Parser Packages

Python provides few packages to parse address in python –

These packages get the job done for most of the addresses, using Natural Language Processing.

Address Parsing using the Google Maps Geocoding API

In this tutorial, we will show you how to convert a freeform single string address into a structured address with Latitude and Longitude using Google Maps Geocoding API. You can also use this API for Reverse Geocoding. i.e., you can convert geo-coordinates into addresses.

What is Geocoding?

Geocoding is the process of converting addresses such as – “71 Pilgrim Avenue Chevy Chase, Md 20815” into geographic coordinates like – latitude 38.9292172, longitude -77.07120479.

Google Maps Geocoding API

Google Maps Geocoding API is a service that provides geocoding and reverse geocoding for an address. So this Python script is a kind of wrapper for this API.

Each Google Maps Web Service request requires an API key that is freely available with a Google Account at Google Developers Console. The type of API key you need is a Server key.

How to get an API Key

  1. Visit the Google Developers Console and log in with a Google Account.
  2. Select one of your existing projects, or create a new project.
  3. Enable the Geocoding API.
  4. Create a new Server Key.
  5. You can restrict requests to a particular IP address, but it is optional.

Important: Do not share your API Key, take care to keep them secure. You can delete an old one and generate a new one if needed.

API Usage Limits

Standard usage: 2500 free requests per day and 50 requests per second

Premium usage: 100,000 requests per day and 50* server-side requests per second

* The default limit can be changed

A Simple Demo – Parse Address using Python

The script below can accept address strings as a CSV, or you can just paste the addresses into a list. The script would output the results as a clean CSV file.

https://gist.github.com/scrapehero/1cb241a9dbe3798e4bdc36644b703dbb

If the embed to parse address in python above does not work, you can get the code from GIST here.

Save the file and run the script in command prompt or terminal as:

python geocoder.py

Once it completes running, you will get an output in a CSV file data.csv. You can modify the file name from line no. 47. You can also modify the code to supply the file name as a positional argument too. 

You can go ahead and modify the lines that read the addresses and writes it, to read from a data pipeline and write it to a database. It’s relatively easy, but beyond the scope of this simple demonstration.

Let us know in comments below how this script to parse address in python worked for you or if you have a better solution.

If you need professional help with scraping complex websites, contact us by filling up the form below.

Tell us about your complex web scraping projects

Turn the Internet into meaningful, structured and usable data



Please DO NOT contact us for any help with our Tutorials and Code using this form or by calling us, instead please add a comment to the bottom of the tutorial page for help

Disclaimer: Any code provided in our tutorials is for illustration and learning purposes only. We are not responsible for how it is used and assume no liability for any detrimental usage of the source code. The mere presence of this code on our site does not imply that we encourage scraping or scrape the websites referenced in the code and accompanying tutorial. The tutorials only help illustrate the technique of programming web scrapers for popular internet websites. We are not obligated to provide any support for the code, however, if you add your questions in the comments section, we may periodically address them.

Table of content

Scrape any website, any format, no sweat.

ScrapeHero is the real deal for enterprise-grade scraping.

Ready to turn the internet into meaningful and usable data?

Contact us to schedule a brief, introductory call with our experts and learn how we can assist your needs.

Continue Reading

NoSQL vs. SQL databases

Stuck Choosing a Database? Explore NoSQL vs. SQL Databases in Detail

Find out which SQL and NoSQL databases are best suited to store your scraped data.
Scrape JavaScript-Rich Websites

Upgrade Your Web Scraping Skills: Scrape JavaScript-Rich Websites

Learn all about scraping JavaScript-rich websites.
Web scraping with mechanicalsoup

Ditch Multiple Libraries by Web Scraping with MechanicalSoup

Learn how you can replace Python requests and BeautifulSoup with MechanicalSoup.
ScrapeHero Logo

Can we help you get some data?